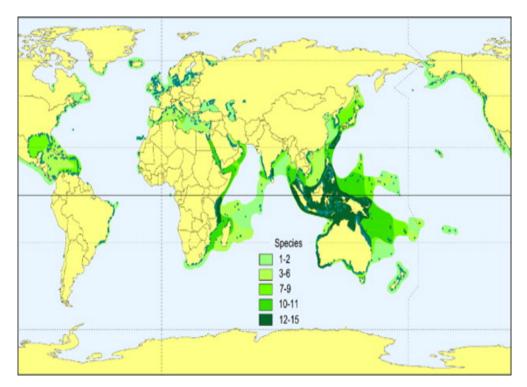
Keeping Balance: the Status and Importance of Seagrass Ecosystems in the Pacific Oceanscape

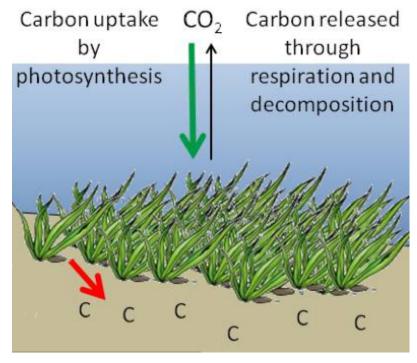
Gilianne Brodie¹, Jeremy Hills², Cherie Morris², Namrata Chand³, Katy Soapi^{4,5}, Posa Skelton⁶, Shalini Singh⁷

¹School of Biological & Chemical Sciences (USP), ²Institute of Marine Resources (USP), ³ School of Geography, Environment & Earth Sciences ⁴Institute of Applied Sciences (USP); ⁵Tetepare Descendants Association and ⁶Oceania Research and Development Associates, Australia, ⁷ Pacific Centre for Environment and Sustainable Development (USP).



Seagrass Meadows

- Seagrasses are marine flowering plants, that reproduce both sexually & asexually to form extensive meadows.
- Closely related to members of the lily and taro families. And must have sunlight to allow photosynthesis.
- Seagrasses possess roots, stems, leaves, flowers, fruits & seeds like terrestrial plants. Thus much of there biomass is hidden underground.


Seagrass Distribution

Source: Short et al. 2007

- Seagrass meadows grow along coastlines of every continent except Antarctica.
- Highest seagrass "diversity" with ~14 species found in Indo-Pacific region¹¹.
- Globally 14% of all seagrass species are considered at risk of extinction.

Seagrass Efficient at Fixing CO₂

Source: 9

- Ocean ("blue-carbon") crucial in regulating global carbon capture = 55%.
- Seagrass is responsible for up to 11% of this "blue-carbon" storage by oceans each year².
- Seagrass stores carbon @ a rate 35 times faster than tropical rainforests.
- 90% carbon in sediment & continues to build on this for centuries.

Vulnerability to Climate Change

4 main areas well documented by Waycott et al., 2011

Sea Level Rise

- Depth of habitat will increase, reducing light to plants
- Coastal land erosion will destroy seagrass substrate

CO₂ Rise

- Increased CO_2 reduces pH & affects availability & rate of carbon uptake
- Increased productivity, biomass & reproductive output

Increased Storms & Rainfall

- Impact plant habitat & physiological processes
- Resilience and recovery from physical disturbance takes time – research now occurring overseas

Sea Temperature Increase

- Decrease efficiency of photosynthesis
- Expected significant effects on reproduction - limited information

Threats to Seagrasses Meadows

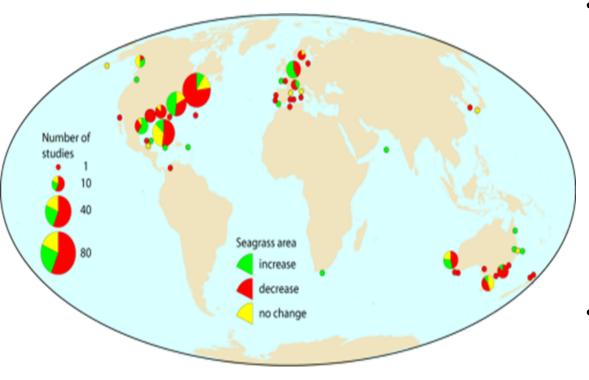


Photo Source: Lamb, et al. 2017.

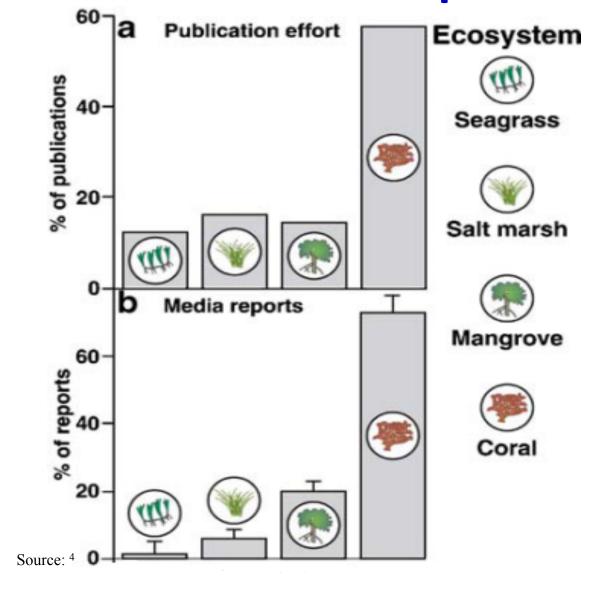
- Poor recognition of seagrass habitat as a highly valuable natural resource.
- Climate change impacts driven by huge global human population increases.
- Unsustainable natural resource use including pollution & coastal development.
- Land clearing & associated poor catchment management practices.
- Lack of regional research on which to base sound management decisions.

Seagrass Losses & Gains

• Seagrass coverage is being lost globally at an annual rate of 1.5% y⁻¹ that is equal to about 2 football fields being lost each hour².

- Scientists attribute this to poor water quality caused by "pollutants" especially sediments and nutrients⁴ from land run-off causing cloudy water that prevents sunlight penetration to seagrass plants.
 - There appears to be no current information from Oceania except for Australia & New Zealand.

Human Influence on Seagrasses



- The direct & indirect effects of human activities account for most losses of seagrass meadows in recent decades.
- Water quality degradation resulting from increased sediment & nutrient runoff from human-altered water catchments is of particularly concern.
- Coastal development, industrial & domestic pollution are also major contributors.
- Destructive fishing practices & non-control of mechanical damage through anchor, propeller, & fishing gear. Anchoring and propeller scars takes ~ 2-5 years to heal.

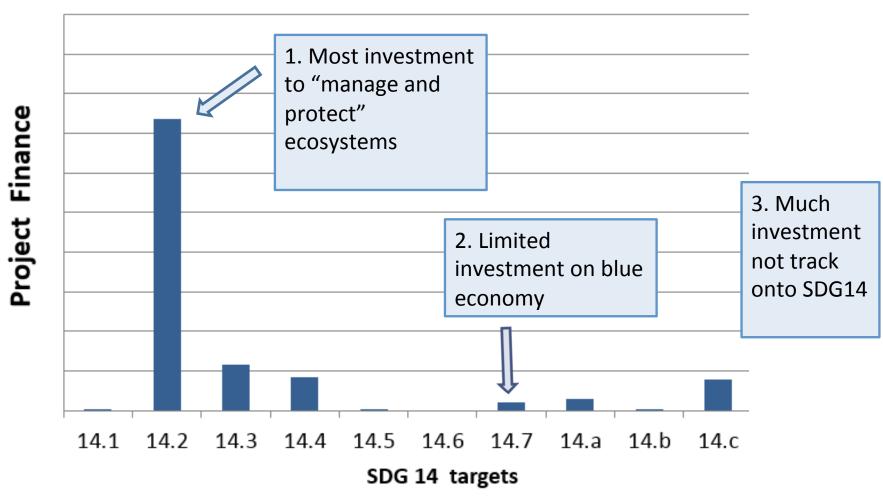
the Status and Importance of Seagrass Ecosystems in the Pacific Oceanscape

Publications and reports

1. Publication and reporting

Gaps in Relevant Oceans Policy

- Surprisingly seagrass habitat is not currently mentioned in key regional policy instruments such as:
 - Pacific Island Regional Ocean Policy & Framework for Integrated
 Strategic Action¹²
 - Framework for a Pacific Oceanscape¹³.


¹² Marine Sector Working Group (MSWG) of the Council of Regional Organizations in the Pacific (CROP); 2005.

¹³ Pacific Islands Forum Secretariat (PIFS), 2010.

- 2. Policy focus
- 1. Publication and reporting


SDG14 – profiling ocean investment

Multi- & bilateral oceans investments last 10 years

Enhancing Pacific Ocean Governance (EPOG) project: DEE – CSIRO, OPOC, USP.

Marine development finance - seagrass

Total Coastal in Millions (\$USD)

- Total Seagrass Implict in Millions (\$USD)
- Total Seagrass Explict in Millions (\$USD)

- 3. Development finance
- 2. Policy focus
- 1. Publication and reporting

Biodiversity portfolio analysis

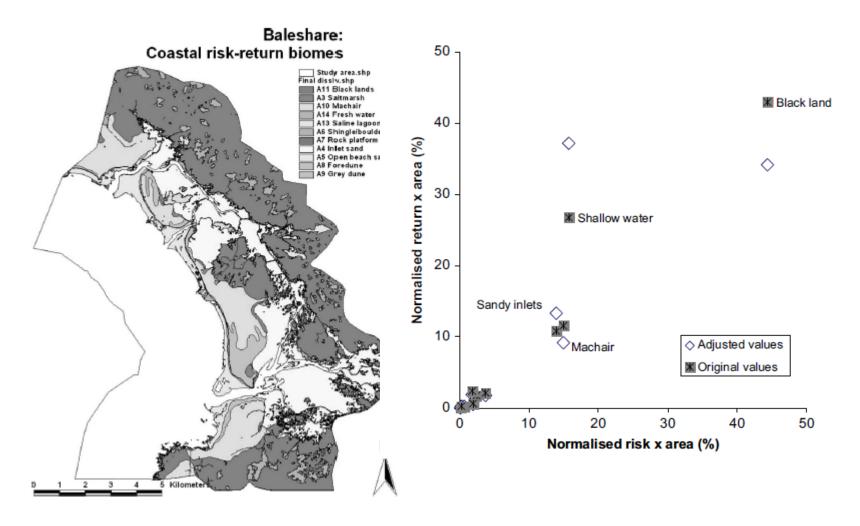
Biodiversity portfolio analysis

Marine Policy 33 (2009) 887-900

Contents lists available at ScienceDirect

Marine Policy

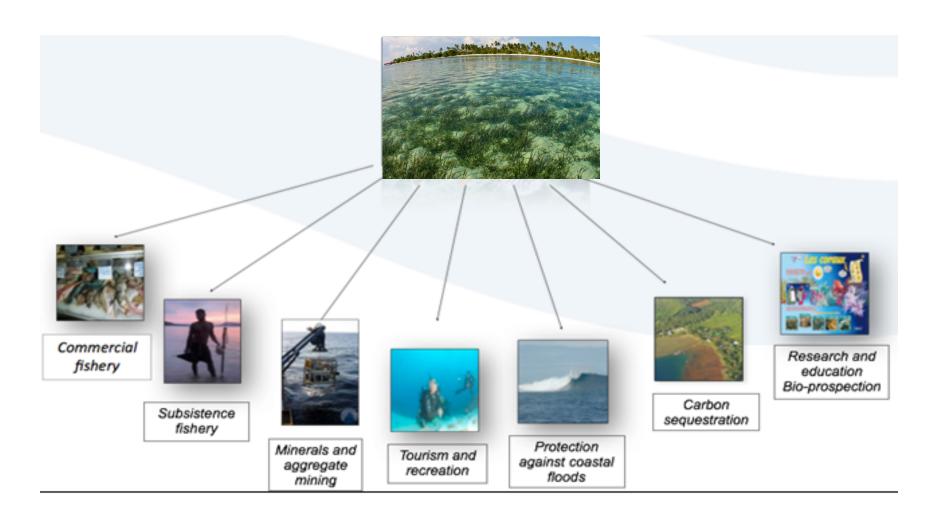
journal homepage: www.elsevier.com/locate/marpol



Landscape-scale analysis of ecosystem risk and returns: A new tool for ICZM Jeremy Hills a,*, Margaret Carlisle b, Martin Le Tissier a, David Muir c, Caroline Robinson d

Optimising the returns from a share portfolio, or a suite of ecosystems in a landscape, is dependent on the relationship between the units in terms of risk and return.

- 1. Biome area
- 2. Ecosystem service threat (threat & severity) risk
- 3. Ecosystem service value return


Biodiversity portfolio analysis

Portfolio resilience – inversely related biome pairs

- 3. Development finance
- 2. Policy focus
- 1. Publication and reporting

Seagrasses economic services

1. Array of services

- 3. Development finance
- 2. Policy focus
- 1. Publication and reporting

Seagrasses economic valuation - Melanesia

CORAL REEFS, MANGROVES, FOOD SECURITY,

LIVELIHOODS, STORM PROTECTION, TOURISM

ASSETS — THEY'RE ALL CONNECTED

PRIMARY ASSETS

Marine Fisheries US\$ 124.1 bn

Mangroves US\$ 109.6 bn

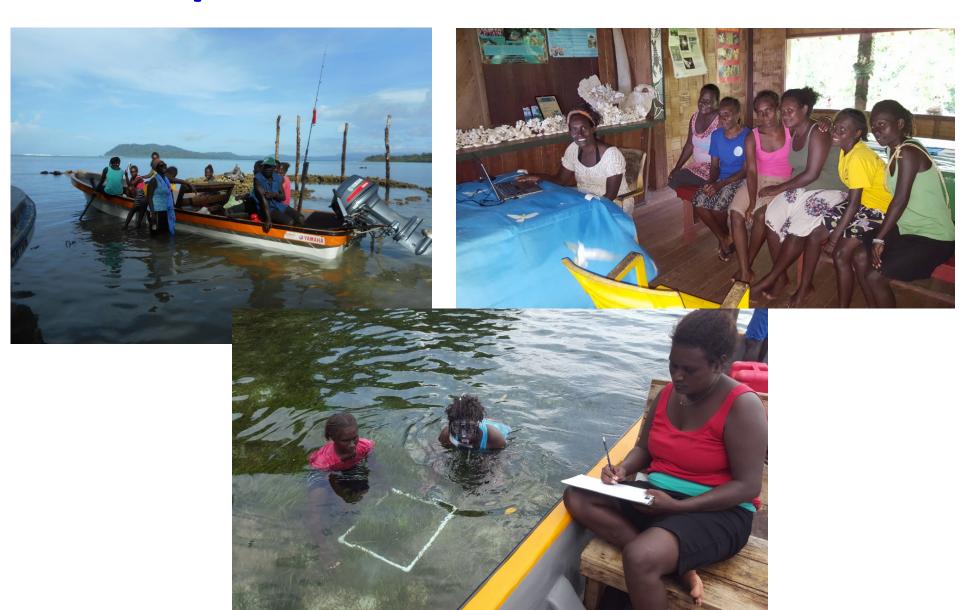
Coral Reefs US\$ 145.7 bn

Seagrass US\$ 151.4 bn

ADJACENT ASSETS

Productive Coastline US\$ 14.7 bn

Carbon Absorption US\$ 2.9 bn


- 2. Biggest ecological asset
- 1. Array of services

- 3. Development finance
- 2. Policy focus
- 1. Publication and reporting

USP - SRT - project

- Analyse the existing 10-year seagrass dataset and to determine the longitudinal change in seagrass in the region.
- Assess the regional project financing portfolio of interventions in seagrass in the Pacific and future finance flows.
- Produce one regional review publication on the ecological and management status of Pacific seagrass ecosystems.
- Build regional capacity and seagrass mapping and analysis.

Tetepare Descendant Association

- 3. Development finance
- 2. Policy focus
- 1. Publication and reporting

- 2. Biggest ecological asset
- 1. Array of services

