







# Myrtle rust – impact on native Myrtaceae and associated plant communities in Australia

**Geoff Pegg – DAF Queensland** 





### What is myrtle rust & why significant to Australia?

- Myrtle rust
  - Rust fungus *Austropuccinia psidii* (formerly *Puccinia psidii*)
    - Origins in South America
      - = guava/eucalypt rust
      - Multiple strains/biotypes
        - Pandemic strain identified in Australia



- Myrtaceae in Australia
  - >2250 species from 88 genera
  - Dominate many fragile and essential ecosystems
  - Important socially & commercially



### **Spread in Australia**



#### Research aims

 Determine susceptibility of Australian Myrtaceae to A. psidii

- Determine impact on plant communities
  - Wet sclerophyll/Subtropical rainforest environment



## Host range & susceptibility

#### >350 species from 57 different genera

- Giblin FR & Carnegie AJ (2014) *Puccinia psidii* (Myrtle rust) Australian host list. Version current at 23 Oct. 2014. http://www.anpc.asn.au/myrtle-rust
- 180 species rated for susceptibility and impact over time
  - 30% highly or extremely susceptible with severe dieback and tree deaths recorded





## Rhodomyrtus psidioides Native guava

#### Myrtle rust impact

- Affecting all life stages
  - Mature trees dead or dying
  - Death of epicormic shoots
  - Root suckers infected &/or killed
  - Flowers/fruit infected
  - No evidence of seedlings
- Species extinct from a number of sites

| Location                 | % dead 2014 | % dead 2016 |
|--------------------------|-------------|-------------|
| Bongil Bongil NP, NSW    | 72          | 100         |
| Port Macquarie 1, NSW    | 12          | 69          |
| Tallebudgera Valley, Qld | 97          | 100         |

Carnegie et al. 2016, Biological Invasions 18:127-144

#### Decline of established stands of *Rhodomyrtus psidioides*



#### Rapid decline of regenerating root suckers







## Rhodamnia rubescens Malletwood

#### Myrtle rust impact

- Slower rates of decline reduction in leaf size, dieback initiated in the lower canopy
- Flower & fruit infection results in premature senescence
- Seedlings rarely observed

| Location            | % dead 2014 | % dead 2016 |
|---------------------|-------------|-------------|
| Gold Ck , Qld       | 73          | 92          |
| Tallebudgera 1, Qld | 25          | 30          |
| Tallebudgera 2, Qld | 0           | 31          |
| Bongil Bongil , NSW | 10          | 50          |
| Royal NP, NSW       | 23          | 50          |

Carnegie et al. 2016, Biological Invasions 18:127-144

#### **Decline of** *Rhodamnia rubescens*



## Rhodamnia rubescens & Rhodomyrtus psidioides proposed new listing - Critically Endangered

NSW only - not nationally applied!!

The Scientific Committee, established by the *Threatened Species Conservation Act 1995*, has made a Preliminary Determination to support a proposal to list the shrub or small tree *Rhodamnia rubescens* (Benth.) Miq. as a CRITICALLY ENDANGERED SPECIES in Part 1 of Schedule 1A of the Act.

The Scientific Committee, established by the *Threatened Species Conservation Act 1995*, has made a Preliminary Determination to support a proposal to list the shrub or small tree *Rhodomyrtus psidioides* (G.Don) Benth. as a CRITICALLY ENDANGERED SPECIES in Part 1 of Schedule 1A of the Act.

## Impact of A. psidii on plant communities

- Tallebudgera Valley, south east Queensland
  - Wet sclerophyll forest with a rainforest under-story
    - These ecosystems are unique to Australia
      - » Dominated by Eucalyptus grandis and Lophostemon confertus over-story
  - Transitioning to sub-tropical rainforest
    - In the absence of fire or other disturbances, many wet sclerophyll sites will transition to rainforest



#### Impact of A. psidii on plant communities

- Study site established 2016
  - Four 50m x 2m plots established to determine impact on Myrtaceae species
    - Each tree labelled
      - Myrtaceae & non-Myrtaceae
        - » Mid-story/Under-story/Regenerating seedlings
        - » Myrtaceae identified to species level
    - A. psidii impact assessment
      - incidence/severity
      - Dieback levels
        - » Branch death/dieback/crown transparency
      - -Tree deaths 2016 & 2017



#### Mid-story species and composition



#### **Under-story species and composition**



#### 10 species of Myrtaceae



### Wet sclerophyll/subtropical rainforest

- Myrtle rust is causing significant dieback on all mid and under-storey species apart from Acmena smithii
- Myrtaceae being replaced by non-Myrtaceae seedlings







## Rate of decline of species

|                           | Trees dead 2016 (%) | Trees dead 2017 (%) |
|---------------------------|---------------------|---------------------|
| Acmena smithii            | 0                   | 0                   |
| Archirhodomyrtus beckleri | 13.1                | 44.1                |
| Decaspermum humile        | 36.4                | 72.7                |
| Gossia hillii             | 17.8                | 37.8                |
| Rhodamnia maideniana      | 0                   | 0                   |











Rhodamnia maideniana

Acmena smithii

# Dieback of Archirhodomyrtus beckleri & Gossia hillii



# Dieback of understory Archirhodomyrtus beckleri







## Decline of rainforest species - 2014



Decline of rainforest species - 2016



## **Summary**

- Impact on threatened and widespread species
  - Local extinction of species
  - Already seeing changes in species composition
- Changes in plant communities
  - Is this typical of the impact in other areas?
    - Different forest types?
    - Established rainforest ecosystems?
  - Change in biodiversity?
  - Change in ecosystem function?
    - Impact on pollinators and pollination process?
    - Impact on species specific insects?



#### Thank you

- Plant Biosecurity CRC
- Angus Carnegie, Fiona Giblin, Peter Entwistle, Gordon Guymer, Tamara Taylor, Suzy Perry
- Email geoff.pegg@daf.qld.gov.au







Business
Cooperative Research
Centres Programme