

# Fishing Pressure

#### Fish biomass removal

Alters reefs ecology:

- Distorts trophic structure (Friedlander et al. 2010, Friedlander & DeMartini 2002)



- Alters community composition (Myers & Worm 2003, Worm et al. 2008)

- Loss of functional groups & benefits (Bellwood 2004, Worm et al. 2008)

### **Habitat Conditions**

- Seafloor habitats and oceanography influence fish distributions
  - Reef structure, coral cover, waves, etc.
- Predict fish distributions based on habitat conditions
  - Combine fish surveys and remote sensing data w/ predictive modeling methods

# Goals & Objectives

- 1. Map fishing pressure and habitats
- 2. Identify habitat conditions which support targeted reef fishes
- 3. Model recovery potential in the absence of fishing
- 4. Identify areas with the highest recovery potential to prioritize for management



### **Database**

Hawaii Division of Aquatic Resources

Friedlander et al. 2017









Protecting nature. Preserving life.™



# Modeling

- Targeted reef fishes
  - Biomass
  - Length

Dulvy & Reynolds 2002, Dulvy et al. 2003, Cheung et al. 2005

- Habitat conditions: 25 variables
  - Seafloor cover from habitat maps
  - Reef structure
  - Depth
  - Wave power
  - Distance to shore
  - Latitude, Longitude
  - Fishing pressure



# **Mapping Fishing Pressure**

#### Issues and challenges in Hawaii:

- No fine scale information on near shore fishing

#### Data that does exist:

- Commercial report data (State)
- Non-commercial fishing effort surveys McCoy 2015
- MPA boundaries





## **Shore Fishing**

Non-commercial surveys:

Average annual fishing effort (hrs/yr) for reef fish, by island from 2004 – 2013



## **Boat Fishing**

Average annual fishing effort (hrs/yr) for reef fish, by island from 2004 - 2013



#### Island-scale estimates

#### **Proxy Data**

- Distance to Boat Launch/Harbor
- Human population













## **Modeling Approach**

Boosted Regression Trees (BRTs)



- Biomass and Length
  - Model: Fish ~ Habitat + <u>Current Fishing Pressure</u>
  - Scenario: Fish ~ Habitat + Zero Fishing Pressure
- Prediction 60x60m resolution maps:

### **Recovery Potential & Priority Areas**



 Areas with highest recovery potential (significant increase in biomass or length) were selected to represent priority areas





Results

### **Model Performance**

- Current fishing pressure
- Biomass
  - 61% variability explained
- Length
  - 41% variability explained

- Key variables:
  - Fishing pressure
  - Reef structure
  - Wave power
  - Depth



## **Biomass & Length Models**





#### No Fishing











# **Recovery Potential**



# **Management Prioritization**





- Areas located on North shores – high wave exposure
- Oahu:
  - Biomass +88%
  - Length +42%
- Maui:
  - Biomass +82%
  - Length +40%

## Summary...

- Low levels of fishing pressure have large impacts on targeted fish populations
- High reef structure, high wave power, and deeper waters are key habitat conditions
- Currently targeted fish found in areas far from humans
- With fishing removed they become more widely dispersed among key habitats

## **Management Implications**

- Maps under current fishing levels show areas with healthy fish populations
- Maps with fishing pressure removed identify key habitats
- Combining both maps identifies areas with the highest recovery potential
- These areas can be used as starting points for marine reserve selection
- Hawaii 30 x 30 initiative



