To log or to protect? Ridge to reef planning on Kolombangara Island

Amelia Wenger, Scott Atkinson, Kim Falsinki, Stacy Jupiter

Laurance et al. 2014

3.5

7 Kilometers

FIJI FOREST HARVESTING CODE OF PRACTICE

- ➤ Soil erodibility not considered as an important risk factor to consider in planning of clearing activities
- >Unclear how well mitigation strategies work as clearing extent increases

➤ No information on how to assess potential impact to downstream resources

- Cannot properly consider trade-offs between short and long-term land-use plans
- Unclear how well mitigation strategies work as clearing extent increases

➤ No information on how to assess potential impact to downstream resources

- Cannot properly consider trade-offs between short and long-term land-use plans
- can undermine decision-making around how much development activity can occur before ecosystem services are unduly impacted

➤ No information on how to assess potential impact to downstream resources

➤ Soil erodibility not considered as an important risk factor to consider in planning of clearing activities

>Unclear how well mitigation strategies work as clearing extent increases

➤ How to decide where sustainable development could occur?

Goals of study

- ➤ How well do soil erosion management strategies minimize soil erosion and sediment runoff as the extent of land-clearing increases?
- ➤ What proportion of catchments allow for sustainable clearing while minimizing soil erosion risks or downstream impacts?
- ➤ How does the incorporation of both the risk of erosion and downstream impacts change the ability to sustainably clear?

Goals of study

➤ How well do soil erosion management strategies minimize soil erosion and sediment runoff as the extent of land-clearing increases?

➤ What proportion of catchments allow for sustainable clearing while minimizing soil erosion risks or downstream impacts?

➤ How does the incorporation of both the risk of erosion and downstream impacts change the ability to sustainably clear?

➤ Identified catchments that had erosion rates of less than 11 t/ ha/yr

➤ Developed downstream impact risk score based on size of settlements and sediment runoff rates

Only considering soil erosion rates

No management 10% clearing

Only considering soil erosion rates

No management 40% clearing

Only considering downstream impacts

Only considering downstream impacts

Considering both erosion and downstream impacts

No management 10% clearing

Considering both erosion and downstream impacts

Considering both erosion and downstream impacts

Take home messages

➤ Unlikely that clearing above 400m will be sustainable in the long-term

➤ Management strategies can reduce soil erosion and sediment runoff but it needs to be linked to relevant thresholds

Considering both direct and downstream impacts important!!

